Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 18(1): 162, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281564

RESUMO

BACKGROUND: Colony-stimulating factor 1 (CSF1) expression in the central nervous system (CNS) increases in response to a variety of stimuli, and CSF1 is overexpressed in many CNS diseases. In young adult mice, we previously showed that CSF1 overexpression in the CNS caused the proliferation of IBA1+ microglia without promoting the expression of M2 polarization markers. METHODS: Immunohistochemical and molecular analyses were performed to further examine the impact of CSF1 overexpression on glia in both young and aged mice. RESULTS: As CSF1 overexpressing mice age, IBA1+ cell numbers are constrained by a decline in proliferation rate. Compared to controls, there were no differences in expression of the M2 markers ARG1 and MRC1 (CD206) in CSF1 overexpressing mice of any age, indicating that even prolonged exposure to increased CSF1 does not impact M2 polarization status in vivo. Moreover, RNA-sequencing confirmed the lack of increased expression of markers of M2 polarization in microglia exposed to CSF1 overexpression but did reveal changes in expression of other immune-related genes. Although treatment with inhibitors of the CSF1 receptor, CSF1R, has been shown to impact other glia, no increased expression of oligodendrocyte lineage or astrocyte markers was observed in CSF1 overexpressing mice. CONCLUSIONS: Our study indicates that microglia are the primary glial lineage impacted by CSF1 overexpression in the CNS and that microglia ultimately adapt to the presence of the CSF1 mitogenic signal.


Assuntos
Linhagem da Célula , Fator Estimulador de Colônias de Macrófagos/metabolismo , Neuroglia/metabolismo , Animais , Arginase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Gliose , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neuroglia/citologia , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
2.
Dysphagia ; 33(6): 768-777, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29713897

RESUMO

To evaluate timing and duration differences in airway protection and esophageal opening after oral intubation and mechanical ventilation for acute respiratory distress syndrome (ARDS) survivors versus age-matched healthy volunteers. Orally intubated adult (≥ 18 years old) patients receiving mechanical ventilation for ARDS were evaluated for swallowing impairments via a videofluoroscopic swallow study (VFSS) during usual care. Exclusion criteria were tracheostomy, neurological impairment, and head and neck cancer. Previously recruited healthy volunteers (n = 56) served as age-matched controls. All subjects were evaluated using 5-ml thin liquid barium boluses. VFSS recordings were reviewed frame-by-frame for the onsets of 9 pharyngeal and laryngeal events during swallowing. Eleven patients met inclusion criteria, with a median (interquartile range [IQR]) intubation duration of 14 (9, 16) days, and VFSSs completed a median of 5 (4, 13) days post-extubation. After arrival of the bolus in the pharynx, ARDS patients achieved maximum laryngeal closure a median (IQR) of 184 (158, 351) ms later than age-matched, healthy volunteers (p < 0.001) and it took longer to achieve laryngeal closure with a median (IQR) difference of 151 (103, 217) ms (p < 0.001), although there was no significant difference in duration of laryngeal closure. Pharyngoesophageal segment opening was a median (IQR) of - 116 (- 183, 1) ms (p = 0.004) shorter than in age-matched, healthy controls. Evaluation of swallowing physiology after oral endotracheal intubation in ARDS patients demonstrates slowed pharyngeal and laryngeal swallowing timing, suggesting swallow-related muscle weakness. These findings may highlight specific areas for further evaluation and potential therapeutic intervention to reduce post-extubation aspiration.


Assuntos
Deglutição/fisiologia , Intubação Intratraqueal/efeitos adversos , Laringe/fisiopatologia , Faringe/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Idoso , Cinerradiografia , Transtornos de Deglutição/diagnóstico por imagem , Transtornos de Deglutição/etiologia , Feminino , Trânsito Gastrointestinal , Humanos , Laringe/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Faringe/diagnóstico por imagem , Estudos Prospectivos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Fatores de Tempo
3.
Cancer Res ; 76(9): 2552-60, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013192

RESUMO

Current therapies for high-grade gliomas extend survival only modestly. The glioma microenvironment, including glioma-associated microglia/macrophages (GAM), is a potential therapeutic target. The microglia/macrophage cytokine CSF1 and its receptor CSF1R are overexpressed in human high-grade gliomas. To determine whether the other known CSF1R ligand IL34 is expressed in gliomas, we examined expression array data of human high-grade gliomas and performed RT-PCR on glioblastoma sphere-forming cell lines (GSC). Expression microarray analyses indicated that CSF1, but not IL34, is frequently overexpressed in human tumors. We found that while GSCs did express CSF1, most GSC lines did not express detectable levels of IL34 mRNA. We therefore studied the impact of modulating CSF1 levels on gliomagenesis in the context of the GFAP-V12Ha-ras-IRESLacZ (Ras*) model. Csf1 deficiency deterred glioma formation in the Ras* model, whereas CSF1 transgenic overexpression decreased the survival of Ras* mice and promoted the formation of high-grade gliomas. Conversely, CSF1 overexpression increased GAM density, but did not impact GAM polarization state. Regardless of CSF1 expression status, most GAMs were negative for the M2 polarization markers ARG1 and CD206; when present, ARG1(+) and CD206(+) cells were found in regions of peripheral immune cell invasion. Therefore, our findings indicate that CSF1 signaling is oncogenic during gliomagenesis through a mechanism distinct from modulating GAM polarization status. Cancer Res; 76(9); 2552-60. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Fator Estimulador de Colônias de Macrófagos/biossíntese , Animais , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microscopia Confocal , Reação em Cadeia da Polimerase , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Análise Serial de Tecidos , Regulação para Cima
4.
J Neuroimmunol ; 278: 280-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25468773

RESUMO

During postnatal development, microglia, CNS resident innate immune cells, are essential for synaptic pruning, neuronal apoptosis and remodeling. During this period microglia undergo morphological and phenotypic transformations; however, little is known about how microglial number and density is regulated during postnatal CNS development. We found that after an initial increase during the first 14 postnatal days, microglial numbers in mouse brain began declining in the third postnatal week and were reduced by 50% by 6weeks of age; these "adult" levels were maintained until at least 9months of age. Microglial CD11b levels increased, whereas CD45 and ER-MP58 declined between P10 and adulthood, consistent with a maturing microglial phenotype. Our data indicate that both increased microglial apoptosis and a decreased proliferative capacity contribute to the developmental reduction in microglial numbers. We found no correlation between developmental reductions in microglial numbers and brain mRNA levels of Cd200, Cx3Cl1, M-Csf or Il-34. We tested the ability of M-Csf-overexpression, a key growth factor promoting microglial proliferation and survival, to prevent microglial loss in the third postnatal week. Mice overexpressing M-Csf in astrocytes had higher numbers of microglia at all ages tested. However, the developmental decline in microglial numbers still occurred, suggesting that chronically elevated M-CSF is unable to overcome the developmental decrease in microglial numbers. Whereas the identity of the factor(s) regulating microglial number and density during development remains to be determined, it is likely that microglia respond to a "maturation" signal since the reduction in microglial numbers coincides with CNS maturation.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Citocinas/metabolismo , Microglia/fisiologia , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Proliferação de Células , Citocinas/genética , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos ICR
5.
PLoS One ; 9(11): e113489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25423036

RESUMO

Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Elementos de DNA Transponíveis , Glioma/genética , Animais , Sequência de Bases , Primers do DNA , Proteína Glial Fibrilar Ácida/genética , Camundongos , Reação em Cadeia da Polimerase , Transposases/genética
6.
Glia ; 62(12): 1955-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25042473

RESUMO

Macrophage colony stimulating factor (CSF1) is a cytokine that is upregulated in several diseases of the central nervous system (CNS). To examine the effects of CSF1 overexpression on microglia, transgenic mice that overexpress CSF1 in the glial fibrillary acidic protein (GFAP) compartment were generated. CSF1 overexpressing mice have increased microglial proliferation and increased microglial numbers compared with controls. Treatment with PLX3397, a small molecule inhibitor of the CSF1 receptor CSF1R and related kinases, decreases microglial numbers by promoting microglial apoptosis in both CSF1 overexpressing and control mice. Microglia in CSF1 overexpressing mice exhibit gene expression profiles indicating that they are not basally M1 or M2 polarized, but they do have defects in inducing expression of certain genes in response to the inflammatory stimulus lipopolysaccharide. These results indicate that the CSF1 overexpression observed in CNS pathologies likely has pleiotropic influences on microglia. Furthermore, small molecule inhibition of CSF1R has the potential to reverse CSF1-driven microglial accumulation that is frequently observed in CNS pathologies, but can also promote apoptosis of normal microglia.


Assuntos
Pleiotropia Genética/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Tronco Encefálico/citologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cerebelo/citologia , Citocinas/genética , Citocinas/metabolismo , Pleiotropia Genética/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Marcação In Situ das Extremidades Cortadas , Indóis/farmacologia , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...